it Leibniz
i ©; Z Universitat
to9:4 | Hannover

Love Data Week 2024

Herzlich Willkommen!

Software Management- How
to handle research software

12.02.2024, 14 Uhr 2
Service-Team Forschungsdaten | Love Data Week 2024 | #LoveData24

b

A

B
r

[This presentation is licensed under CC-BY 4.0 International. You are free to use, copy. distribute, edit and re-mix. as long as you indicate the original authors in an appropriate manner.
By

TIB i
L

i1 || Leibniz
1 ©j Z | Universitit
109’4 || Hannover

Welcome!

HEN - Www.fdm.uni-hannover.de/en Q. @Kontakt © Engish
Forschungsdatenmanagement
- FDM an der LUH Kurz erklart Forderantrige Schulungen Materialien Tools
Anna 'Karl na Forschungsdatenrepositorium Team
Renziehausen B
TIB - Leibniz-Informations-
zentrum Technik und Das Service-Team Forschungsdaten

Naturwissenschaften und
Universitatsbibliothek

Publikationsdienste

0506

L visit the website of the Research Data Support Team]

Yvana Glasenapp
Gottfried Wilhelm Leibniz
Universitat Hannover

Dezernat Forschung und
EU-Hochschulbdro,
Technologietransfer

1 [O

S

We are Anna Renziehausen from the TIB Publishing Services and Yvana Glasenapp from the LUH
Research and Transfer Services, and we will guide you through this course. We both belong to the
Research Data Support Team, which also comprises other colleagues from our departments and
from the Leibniz University IT Services, known as LUIS. If you want to know more about our training
courses, counselling and support, have a look at our website, where you will find extensive
information on research data management in general. We are also happy to provide individual

counsel to LUH members.

Visit the website of the Research Data Support Team

https://www.fdm.uni-hannover.de/en/

TBE==-
L

Content of this course

Why is data management important?
How to make research software re-usable
How to publish research software and code

Supporting services and initiatives

i SO

In this course, we would like to give you an introductory overview of the most important aspects of

dealing with research software.

‘ TIB T m Leibniz
Universitat
Hannover

Why is data management important?

v you keep an overview

v team work is easier

v' you can safeguard high quality standards in research

v’ you save time and avoid stress

v you comply with official requirements

further reading
v Data management is the basis for

: The Thuringian Competence Network for Research
Open Science

Data Management compiled some “Research Data
) . : Scarytales”. These are true stories about data
v" You gain recognition for published data management failures and their consequences.

and software
go to the ,Scarytales”]

3

The opinion is still widespread that a planned and systematic data management consumes valuable
time and resources that should be spend preferably for the actual research work. All too often, a
doubled or tripled amount of the supposedly saved-up resources have to be spent afterwards in
order to iron out the negative consequences of a negligent data management, at least partially.

If you manage your data well right from the start, there are many advantages:

* You maintain an overview because you can reliably find data and information again.

* You work together much more effectively as a team because you have agreed on common
standards and procedures.

+ The quality of your data and the research results derived from it is assured because you have
established meaningful review mechanisms.

* You save an enormous amount of time and energy, especially at the end of a project because
your data is already prepared and documented. You have everything at your fingertips and can
even reconstruct what you did at the very beginning.

* You comply with various formal requirements, such as those defined in laws, guidelines or funding
conditions.

» Engaging in Open Science practices is encouraged by various institutions like the EU or the
UNESCO and is gaining more and more importance.

» There is also a shift towards a broader and more diverse recognition of research outputs beyond
classical text publications. One example is the new CV template by the DFG, in which you can
now add up to ten published contributions that are not scientific articles, e.g. data publications,
software, blog contributions and contributions to infrastructure and science communication.

Take a look at our reading tip to see what can go wrong without proper data management:

Research Data Scarytales

https://forschungsdaten-thueringen.de/rdm-scarytales/articles/overview.html

TIB s
.

How to create re-usable research software

Documentation of software projects

The FAIR principles for research software
Developing a software management plan (SMP)
Foundation: How to set up a project

Best practices of software projects
Tests and Test-driven development (TDD)
Refactoring
Clean code
Error messages

README

4 [0Od

>

In this chapter, we will show concepts, methods and tools you can use to create research software
that is reusable by others and can be maintained over a long time.

’ |

Documentation of software projects

is not ALL MODERN DIGITAL
Data independent Research INFRASTRUCTURE
from software
m
AY e
LV B N o
L — 4
But most # Areno
researchers developers

“Data without software are just numbers”
(Davenport & Grant, 2020)

https://xked.com/2347

5 e

In many projects, software is seen as a tool to analyse the data in a certain way to create analysed
data as research outputs. But software and the underlying code is a type of research data, too! The
way software projects need to be documented to become FAIR software are similar to handling
other types of data, but there are some differences. Nicely though, the way software projects are
build up offers many points where RDM practices can be included quite easily.

Read the Essay: “Data Without Software Are Just Numbers”

https://datascience.codata.org/articles/10.5334/dsj-2020-003/

TIB i, i 1| Leibniz
‘ 1 0; 2] Universitit
109’4 || Hannover

The FAIR Principles for research software

F: Findable
This means that the software and all important related information can be v Use persistent
easily found by both humans and machines. identifiers and

F1. The software, individual important components of the software and the fich metadata

different versions of the software all receive persistent and unique identifiers
(PID), e.g. DOL.

F2. The software is described in detail with metadata, which means that all
important information for use and subsequent use is included.

F3. Metadata clearly and explicitly include the PID of the software they

RSETIDS, Findable
F4. Metadata is also FAIR, searchable and can be found and used by
metasearch engines.
ATA ALLIANCE
‘

The important thing in documenting software projects is planning the steps you want to implement
during code development, and then be consistent with this practice. Having created the code of your
research software in a well documented way will not only help you enjoy using the software in the
future, it is also crucial to manage und reuse data which was processed with the software.

You can use the FAIR Principles for Research Software as an orientation which aspects you need to
consider to build well-documented and reusable software. In this and the following slides we have
briefly lined out what the principles contain, but we recommend reading the full article:

FAIR Principles for Research Software (FAIR4RS Principles)

Source of the graphical elements illustrating the four FAIR principles:

National Library of Medicine

https://zenodo.org/record/6623556
https://www.nlm.nih.gov/oet/ed/cde/tutorial/02-200.html

TIB e i 1] Leibniz
‘ 1 ©j Z | Universitit
109’4 || Hannover

The FAIR Principles for research software

A: Accessible

v' Make
Which means that the software and its metadata is retrievable via software and
standardized protocols metadata
retrievable

A1. For this, the protocol should fulfil some requirements, it should be open
and free as well as universally implementable. It should also enable an
authentication and authorisation procedure, if necessary.

A2. In addition the metadata are accessible, even when the Software is no

longer available. ——

Accessible

7 O

S

Accessibility can be achieved, for example, by enabling the software to be downloaded via the

browser using https (A1) and the metadata can be accessed independently of the software, even if
the software is no longer accessible (A2).

TBE==-
L

;|| Leibniz
1 ©j Z) Universitit
too’' 4 | Hannover

The FAIR Principles for research software

I: Interoperable
For software, being interoperable means the possibility to exchange data
between independent software. (It differs from data in the way that

independent software can not be combined like data to form a new data set.)

1. When software interacts to exchange data, the exchange protocol need to
be clearly described. Domain-relevant standards should be used and APIs

should be documented in human and machine readable form.

12. Software should include references to external data, software or objects,
which are required to execute the software. Example: software X is

implemented using software A (a programming language)

v' Use APls,

standards and
references

>

Interoperable

Al cxon

To incorporate a new part of software into the data analysis, it might be necessary to exchange data
between different software. To make this possible, exchange protocols should be well described and
domain-specific standards should be followed. In the software documentation, you should reference
all other, external element that are needed to execute the software, so others do not have to search

for those.

TIB S et M Leibniz
Universitat
‘ Hannover

The FAIR Principles for research software

R: Reusable
v" Document,

This means that you can not only use the software as it is, but have further licence, and

information to understand, modify and built new versions upon this software. follow

community
standards

R1. The software is described with relevant attributes.

R1.1. Alicense is given and should be as unrestrictive as possible.

R1.2. Software is associated with detailed provenance: This is a metadata which b%

includes the history of the software, how it came to be and who contributed to it.

Reusable
R2. Include references to other software which is necessary to compile and run the
software.
R3. Your software should meet domain-relevant community standards and coding
practices. This can be the choice of programming language, testing methods or file
formats.
9

If you simply publish your software with limited documentation, other people might be able to use it
as it is. But to get a real insight into the structure of the software and to be able to modify it, some
more steps need to be undertaken. To make clear what others can or can not do with the software,
add a licence (R1.1). If possible, make it unrestrictive to further uses. The provenance of the
software (R1.2.) can be really helpful to show people that the code comes from a trustworthy source.
If your software relies on other software packages, these need to be named (R2.). You will make
reuse of your software more accessible to others, if you use coding practices that are familiar to
others. Already when planning your project, check if there is a reason to deviate from standards and
broadly accepted practices (R3.).

TIB S i1 || Leibniz
‘ 1 ©j Z) Universitit
too’' 4 | Hannover

Developing a software management plan (SMP)

Can help to: R

@é Software Management Plan (SMP)

= Create a basis for establishing best practices A SMP does not need to'be long, The

following guide offers three templates
adapted for different software
management levels:

= Make the research software reusable and sustainable
= Plan for the necessary resources (financial, human,

infrastructure)

Practical guide to software
management plans

= Make it easy to introduce new developers into the
The Max Planck Society has published a

project comprehensive SMP template, which can
be integrated in RDMO:
Ideally an SMP should be drafted at the beginning of a
research project. The extent of information in the SMP MPG-Template “Software
varies with level of management intensity of the L smanagement o DETeSEacher J
software (low, medium, high). & o
10

It is always a good idea to gather your thoughts when you start a new software project. A SMP helps
you to do this in a structured way. The resulting document can be used by yourself and others to
create, maintain and reuse the software in the future.

In the next two slides we will look at the possible contents of an SMP. It should be noted that
software comes in many different forms: from individual scripts to complete frameworks. These
require different levels of management. Depending on this, one should decide which of the points
make sense to include in one's own SMP and which do not.

We also have two worthwhile reading tips:
Practical guide to software management plans

MPG-Template “Software management plan for researcher”

https://zenodo.org/record/7248877
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3481986

TI s
-

Purpose

Version
control

Version Control
Repository

User Documentation Sotware
Enginering

quality

Software licensing and compatibility

Deployment documentation

.

Project management

Repository

Maintenance

Figure 1. Software Management Plan requirements grouped by their focus

Graphic from: Martinez-Ortiz, C. et al. (2022), Practical guide to Software
Management Plans, p. 17. https://doi.org/10.5281/zenodo.7185371

An SMP makes explicit what research software does, who it is for, what the outputs are, who is

responsible for the release and to ensure that the software stays available to the community (and for

how long).

Here we have now listed some points that could be addressed in an SMP. In the following, we would
like to give a few examples of the questions that should be answered under each aspect:

« Purpose: Briefly describe the software, its purpose and the target group.

+ Version control: How do you version the software? E.g. with Git?

* Repository: Will you publish your software? If yes, how and where? If no, why not?

» User documentation: How do you document your software for users? Where can it be found
(link)? How will you document your software's contribution guidelines and governance structure

» Software licensing and compatibility: Under which license will you release your software? Have
you ensured that the licence you have chosen is compatible with the licences of any downstream
elements (e.g. libraries)?

+ Deployment documentation: How and where will the installation requirements be documented

(link)?

TIB : #: | Leibniz
’ 1 0; 2] Universitit
1094 | Hannover

Developing a software management plan (SMP) part ||

614.5 y of SMP pl di loped for three m

levels o
Core requirement Software management level
= Citation _ 51 (Section 6.
Management Management Management

= Developer documentation

= Testing

X X XXX =29
X X X X X

= Software Engineering quality
= Packaging
= Maintenance

= Support

X X X X X X X

» Risk analysis

X B X Ied X P x Bel %
Table from: Martinez-Ortiz, C. et al. (2022), Practical guide to Software

Management Plans, p.29. https://doi.org/10.5281/zenodo.7185371

Table 4. Core requirements of an SMP for software grouped by management

Gl OO

« Citation: How should users cite your software? A CFF file is particularly suitable for this (Citation
File Format)

» Developer documentation: How is your software documented for future developers?
» Testing: How is the software tested and where are the test results published (link)?

» Software engineering: Do you follow any standards or guidelines to ensure software quality? If
yes, which ones?

» Packaging: How will your software be packaged and distributed?

* Maintenance: What level of support will be provided for users of the software and how will this
support be organised?

» Support: How will support be ensured in the long term?

» Risk analysis: Describe the main external factors that should be considered by developers and
users of the software. E.g. data protection or information security.

As you can see, such an SMP can be quite extensive, but this largely depends on the nature of your
software project: if it is a script, of course, you do not have to provide information on all points. If it is
a large software project, more aspects need to be considered. The table on this slide gives a good
overview of this.

Small software projects typically require a low level of management, while large projects involve a
high level of management.

‘ TIB === m Leibniz
Universitat
Hannover

Foundation: How to set up a project

Create a similar folder layout: Logical order in subfolders:

+ Licence Main script

*+ Readme Data-generating scripts
Experiments (chronological) * Raw data

* Provenance
+ Scripts

* Post-processed data

Untitled 241.doc
Untitled 138 copy.docx
Untitled 138 cop, 2.docx
Untitled 139.docx
Untitled 40 MOM ADDRESS.3p9
Untitied 242.doc

Untitled 243.doc

Untitled 243 IMPORTANT. doc

cictial)

Modular naming scheme:

Date .
CJI JIMMTT (;JICJ’ CZIICJI Parameter C!'C% Version C{

https://xkcd.com/1459

OHIMY G
I Example: 230701_PuppyCuteness_Treats_Cheese_Camembert_v03.fff | /
Data format: Better not choose U Find a file %%
“Fancy File Format” format PROTP: NEVER LOOK IN SOMEONE.
ELSE’S DOCUMENTS FOLDER.

il OO

There are some things you can do right from the start when you begin a new software project.
These will help you to keep the overview of your work and will make it easier to gather everything
you need for software publication.

Especially when you are going to use the same scripts for different data, it is helpful to think of a
folder layout which contains all elements you need. Now you can easily navigate in the individual
project folders, as they all follow the same structure. The same can be done for sub-folders of
experiments.

The names of files should also follow a logical scheme that contains all necessary information to
identify files.

As long as it is only you who is working with the data, you might use any file format you like or you
feel suits your need best. But as soon as you make data public, please do not forget to convert your
data into some format that is non-proprietary, can be read by many programming languages and
ideally is widely used in your community.

Interactive board of common file formats

https://www.lzv.nrw/dateiformate/

TlB v i1} Leibniz
’ 16,2 | universitat
1ea’ 4 | Hannover

Best practices of software projects

HOW T WRITE GOoD CODE: There are a number of published ,Best practice“ guides for
software development in different scientific fields. We have
collected some general practices that help you to write FAIR
software.

L Ten simple rules for documenting scientific software

ALMOST, BUT M5

BECOME A MASS Oliver Melchert’s best practices for small computational
OF KLUDGES AND projects
SPAGHETT| CODE.

THROW IT ALL OUT
AND START OVER..

N Suresoft

g’gg SUSTAINABLE RESEARCH SOFTWARE

v« B

What can you do to write good, well documented code? Luckily, many people and initiatives share
their experiences, which you can adapt in your daily work:

Ten simple rules for documenting scientific software by Benjamin Lee

RDM in practice: Best practices for (small) computational projects by Oliver Melchert, LUH

Suresoft: Sustainable Research Software project by TU Braunschweig and FAU Erlangen-Nurnberg

In the following slides, we will present some general best practices which are not specific to a
research field. Step by step, you can start to implement these practices in your daily work — it will
help you and others to continue working on your software projects in the future!

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006561
https://www.fdm.uni-hannover.de/fileadmin/fdm/Dokumente/Schulungsunterlagen/LoveDataWeek2023_RDM_Melchert.pdf
https://suresoft.dev/

TIB i, i 1| Leibniz
‘ 1 0; 2] Universitit
109’4 || Hannover

Best practice: Tests and Test-driven development (TDD)

» Include testing in the
development process CODE-DRIVEN TESTING REFACTORING

» Each new piece of code is
tested for functionality before
it is added to the main branch

» Best practice: add incremental
changes!

» TDD: First create a test for the
desired functionality, then
write the code that is able to
fulfill the test requirements

15 [O]

S

Testing is a useful way to detect errors in your code right away. There are different approaches and
methods of testing, maybe one of them is already established as practice in your working group. If
not, you should consider to introduce testing as a regular habit. One way is to test any newly written
parts of your code before adding it to the main branch. You can correct any problems that the new
part might cause right away.

A more strategic approach is called test-driven development (TDD). Here, you will first write a test
for the new requirement you want to add to your software. Then, only enough code to fulfil this
requirement and to pass the test is added. This method is closely connected to refactoring — see
next slide!

TIB #: | Leibniz
’ 1 0, 2 Universitat
109:4 | Hannover

Best practice: Refactoring

Extract Function

Code refactoring is the process of restructuring code without changing its

original functionality.

Il

This helps to ensure that

function printOwing(invoice) {
printBanner();
let outstanding = calculateOutstanding();

= the code is more clearly structured and therefore easier to read and

understand

//print details

console. log(name: ${invoice.customer));
console. log(amount: ${outstanding)');

= errors and weak points are easier to find and rectify)

= the code is easier to extend and better to maintain

function printOwing(invoice) {

Martin Fowler, Refactoring catalog: https://refactoring.com/catalog/extractFunction.html

Martin Fowler, Refactoring: improving the design of existing printismery);)
let outstanding = calculateQutstanding();
code (German) printDetails(outstanding);
function printDetails(outstanding)
console. log(name: ${invoice.customer)');
Robert C. Martin, Clean Code: Refactoring, Patterns, Testen console. log(" amount: ${outstanding)');
und Techniken fiir sauberen Code)’

®
4o

One method that we would like to mention is "refactoring”. Code refactoring is the process of
improving the quality of software code by changing some of its parts, deduplicating the code base,
eliminating unnecessary dependencies without changing the external behaviour of the program.

Refactoring is a more time-consuming process, so you should plan it specifically into your workflow,
but it's worth it! Here you can see some examples: refactoring.com

In addition to the points mentioned on the slide, it would also be a good reason to start refactoring if
you observe logical repetitions or circular code structures, if problems occur with a certain part of the
code or if the debugging process takes longer than expected. Here are a few tips on refactoring:

» Refactor before you add new functions or updates to existing code
» Refactor in small steps and regularly

» Troubleshooting and debugging should be done separately

Important refactoring practices are:

* Use meaningful names

» Separate responsibilities and modularise code

» Strengthen cohesion: Ideally, a code component has only one well-defined task

* Reduce coupling: Reduce the degree of dependencies between code components

In our reading tip you will find literature with further helpful tips on refactoring.

https://refactoring.com/catalog/extractFunction.html

i M e
Universitat
‘ Hannover

Best practice: Clean code

» There are different options how to write names, comments,
functions and classes in your code

» Even though a “messy” written code might work, it is not re-usable

» Changing small habits can make a big difference!

In this example, it is better to define a function which contains the for-loop:

input_number = int(input(t def is_prime(number):
prime_flag = True

check if input_number is a prime number for i in range(2, number):
is_prime = True if number % i == @:

for i in range(2, input_number): prime_flag = False

if input_number % i == break

is_prime = False return prime_flag
break

input_number = int(input())
print(input_number, , is_prime(input_number))

L ©om|

print(input_number, :", is_prime)

https://suresoft.dev

®,
©

Your code is considered “clean” if it is easy to read and understand, and therefore easy to maintain
and modify. There are some practice with regards to the use of names, comments, functions and
classes which make the difference between messy and clean code.

When we look at the use of comments, it is important to see them as part of your software
documentation. They help you remember your own thought processes and considerations when you
are already working on the next project, and help other people read and understand your source
code. Comments are also valuable when troubleshooting. Nevertheless, you should find a middle
ground: as many comments as necessary, as few comments as possible. Comments do not replace
well-written code!

We recommend to have a closer look at the examples shown in the “Clean Code” course by
Suresoft:

Suresoft Knowledge Hub: Clean Code

https://suresoft.dev/knowledge-hub/clean-code/

TIB 5
.

[
10,2
100 4

Leibniz

Universitit
Hannover

Best Practice: Error messages

» Write error messages

» Provide solutions or where to find the information relevant to

fixing the error.

Windows XP @

\!) Task failed successfully,

Graphic: Unknown, via: https://community.spiceworks.com/topic/2105369-10-hilarious-
error-messages-facepalm-worthy-computer-prompts-that-make-no-sense

A ERROR

IF YOURE SEEING THIS, THE CODE IS IN WHAT
I THOUGHT WAS AN UNREACHABLE STATE.

I COULD GIVE YOU ADVICE FOR WHAT TO DO.
BUT HONESTLY, WHY SHOULD YOU TRUST ME?
T CLEARLY SCREWED THIS UP IM WRITING A
MESSAGE. THAT SHOULD NEVER APPEAR, YET
T KNOW IT LALL PROBABLY APPEAR SOMEDAY.

ON A DEEP LEVEL, ZKNOW IM NOT
UP TO THIS TASK. ITM S0 SORRY.

y

https://xked.com/2200

NEVER WRITE ERROR MESSAGES TIRED.

18 (O

>

A good error message should state what the error is, what state the software was in when the error
occurred, and how to fix the error or where to find the information relevant to fixing the error.

‘TIB“.

i1 | Leibniz
1 ©j Z) Universitit
too’' 4 | Hannover

Best practice: README Part |

» Give an overview of the project
» List the names and affiliation of
people involved

» Environment and dependencies needed
to run the code

Environment and dependencies

The provided code is written using Python (2.7.16+) and requires the functionality of

* numpy (>=180rc1)
* scipy (>=0.13.0b1)
* matplotlib (>=1.2.1)

All-optical Supercontinuum Switching (code and data)

Code repository for the article
“All-optical Supercontinuum Switching"

Oliver Melchert (1,2,3), Carsten Brée (4), Ayhan Tajalli (2), Alexander Pape (2,5), Rostislav
Arkhipov (6), Stephanie Willms (1,2), Ihar Babushkin (1,2), Dmitry Skryabin (7), Glnter
Steinmeyer (8,8), Uwe Morgner (1,2,3), and Ayhan Demircan (1,2,3)

. Cluster of Excellence PhoenixD, Welfengarten 1, 30167, Hannover, Germany

2. Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1 30167, Hannover,
Germany

3. Hannover Centre for Optical Technologies, Nienburgerstr. 17, 30167, Hannover, Germany

4. WeierstraR Institute for Applied Analysis and Stochastics, MohrenstraBe 39, 10117 Berlin,
Germany

5. VALO Innovations GmbH, Hollerithallee 17, 30419, Hannover, Germany

6. St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia

7. Department of Physics, University of Bath, Bath, BA2 7AY, UK

8. Max-Born-Institute (MBI), Max-Born-Str. 2a, 12489 Berlin

9. Institut fir Physik, Humboldt-Universitat zu Berlin, NewtonstraBe 15, 12489 Berlin,

Germany

This repository contains code and data analysis scripts for reproduction of simulated data and
a draft versions of Figures 3 of the article.

The provided code implements the nonlinear propagation of optical pulses in a NLPM750
photonic crystal fiber in terms of the g i Schrédinger eq , including the
effets of dispersion, self-phase modulation, self-steepening, Raman effect, and quantum

noise

O. Melchert, Research data management in practice

19 [O

Most likely, the README file is the only documentation other users will read, so the README file
should include instructions on how to install and configure the software, where to find the full
documentation, under what licence it is released, how to test it to ensure functionality, and your

acknowledgements.

i 0 | Leibniz
1 ©j Z) Universitit
too’' 4 | Hannover

Best practice: README Part |l

» Details about included material

» License, Citation & Acknowledgements

Subfolder /scripts contains:

® pyGNLSE.py : driver script implementing the genaralized nonlinear Schrédinger equation.

License

This project is licensed under the MIT License - see the LICENSE file for detalils.
Acknowledgments

This work received funding from the Deutsche Forschungsgemeinschaft (DFG) under

Germany'’s Excellence Strategy within the Cluster of PhoenixD (| s, Optics,
and Engineering - Innovation Across Disciplines) (EXC 2122, projectID 390833453).

Included materials
The repository follows a modular structure:

numExp@1_FIG3_propagationDynamics
|— data

|— FIGO3_subfigures

| }— FI6s

| |— GNLSE_BlowWood_tMax8000.000000_Nt32768_zMax600000.000000_Nz15
| | GNLSE_BlowWood_tMax8000.000000_Nt32768_zMax500000.000000_Nz15
| L— GNLSE_BlownWood_tMax8000.200000_Nt32768_zMax600000.000000_N215
}— getFigures.sh

}— main_FIG@3_subfigure.py

L— spectrogram.py

L— main_NLPM750_propagationDynamics_gNoise.py

provenance_data

|— dataProvenance.sh

|— get_info.py

L— provenance_nunExp@1. log

scripts
L— pyGNLSE.py

src
}— data_handler.py
|— raman_response.py
}— solver.py

L— utils.py

LICENSE
Readme .md

O. Melchert, Research data management in practice

2 R

Most likely, the README file is the only documentation your users will read, so the README file
should include instructions on how to install and configure the software, where to find the full
documentation, under what licence it is released, citation requirements, how to test it to ensure

functionality, and your acknowledgements.

PR

How to publish research software and code

Why publish your data and software?

Preparation of your software publication
Version control your documentation
Use automated documentation tools
Software citation

User guide and examples
Publishing software
Licences

Linking journal articles with related data and software

21 (@O

S

In line with good research practice, you should make your scientific results, including research
software, openly available. In this chapter we will show you where you can publish code and
software and how licences work.

TiB
L

Why publish your data and software?

Open data are valuable and can be used to create new research output or tools of public

interest:
= Participation: findtoilet.dk
= Empowerment of citizens: mapnificient

= |nnovation: EHEC outbreak genome analysis

Reasons to publish your research software: +% R l
= To enable software citation v

= To make the software FAIR i

= To let software count towards evaluation

reiwion ¥

Mapnificent.net

2z S=od

Making your data and software ready for publication might include some effort and workload. But
there are various reasons why it is a good idea to publish your data and software: We have collected
some examples of tools and innovations which are build upon openly available data.

Findtoilet

Mapnificent
GitHub E. coli 0104:H4 Genome Analysis Crowdsourcing

In the academic field, fulfilling the requirements of funding agencies is often the main motivation to
publish data and code. The importance of access to and reuse of research software is getting more
and more attention. So by making your software public, it can be cited and linked with other
research outputs. Fulfilling the FAIR principles will make the software attractive for others to use or
reuse. Software as research output is also getting more value in the academic rewards and
recognition system, so you can include published software in your list of research outputs.

https://findtoilet.dk/
https://www.mapnificent.net/
https://github.com/ehec-outbreak-crowdsourced/BGI-data-analysis/wiki

TIB . it
. 102] Universitit
1ea’ 4 | Hannover

Software publication: Version control your documentation

» Make it clear which documentation Changelog
applies to which software version

All notable changes to this project will be documented in this file.

> A Change|og can make th|S task much The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

easler Unreleased
» There are useful services that can help

you do this. Added

= v1.1 Italian translation.

 v1.1 Polish translation.
1.1.1- 2023-03-05

Added

« Arabic translation (#444),
= v1.1 French translation.

« v1.1 Dutch translation (#371).

* v1.1 Russian translation (#410).
* v1.1 Japanese translation (#363).

+ v1.1 Norwegian Bokmal translation (#383).

Screenshot: https://github.com/olivierlacan/keep-a-
changelog/blob/main/fCHANGELOG.md

 v1.1 "Inconsistent Changes” Turkish translation (#347).

+ Default to most recent versions available for each languages

23 [04

Even a small change in the default settings in a new software version, hidden from the user, can
have a big impact on the results. So it is very important to version your documentation and make it
clear which documentation applies to which software version. That is, keep older versions
accessible to users. Keeping a changelog in your documentation can make this task much easier.

Useful services, which will archive every version of your documentation, are: readthedocs and
zenodo.org

https://about.readthedocs.com/
https://zenodo.org/

TIB S et M Leibniz
‘ Universitat
Hannover

Best Practice: Use documentation tools

» Documentation of a project is the alpha and

Welcome to eLabFTW's documentation!

omega
» Complete and prompt documentation is Welcome to eLabFTW's
essential documentation!

» Use tools to create a nice documentation site
which helps others to use your software @ | eLabFTW

Website: v abf

Live demo:

Sphinx Python Documentation Generator:

How to use this site

docs

}— build
— make.bat
— Makefile
L— source

conf.py
index.rst
f— _static

L— templates

documentation. Look at i

select where you want to go:

Technical
documentation

o oo

The documentation of a project is the alpha and omega. Without documentation, decisions and
results cannot be traced, reproduced and reused. Documentation should always be done in a timely
manner so that nothing important is forgotten. Nevertheless, one can try to simplify this important
work step.

For example, there is software that can read your comments and use them to create detailed
documentation, like Sphinx (sphinx-doc.org) or Doxygen (doxygen.nl).

Read the docs (readthedocs.com) for example, is a documentation hosting platform that can help
you version your documentation.

https://www.sphinx-doc.org/en/master/
https://doxygen.nl/
https://about.readthedocs.com/

TIB s
.

i1 || Leibniz
1 ©j Z | Universitit
109’4 || Hannover

Software publication: Software Citation

» Provide information on how to cite your code

» Be sure to always properly cite other people's

code that you reuse as well

This CITATION.cff file was generated with cffinit.
Visit https://bit.ly/cffinit to generate yours today!

cff-version: 1.2.0
title: Cheese_TAX_Alert
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Sheryl
family-names: Mc Sniff
email: SMS@gmail.com
affiliation: University of Dogford
repository-code: ‘https://git.eu/McSniff/cheesetaxalert’
repository: ‘https://doi.org/10.123456789/mcsniff’
abstract: >-
the software can be installed in a refrigerator so that as
soon as the refrigerator door is opened, the Puppy
receives a warning signal that the Cheese Tax must be
collected.
keywords:
- puppy
- cheese
- tax
license: MIT
version: '1.0'
date-released: '2023-09-01°

3 (OO

>

Ideally, include the PID (e.g. DOI), a BibTeX entry and a written reference to your publication in your
README file and provide a "CITATION" file in CFF format, so that other researchers who want to
cite your code have all the important details. You can use the following tool to create a CFF file:

citation-file-format.github.io

https://citation-file-format.github.io/cff-initializer-javascript/#/

TIB = 1 | Leibniz
. 1 ©j Z) Universitit
too’' 4 | Hannover

Software publication: User quide and examples

| User guide

» People might not use your software if it

takes too much time to get started + =
ser guide

This guide is aimed to users, there is also one for

» Add examples, a tutorial, videos —
anything that helps to show the
functionalities of your software

Experiments

» If you have numerous examples, use a
special section or directory

» Try your user guide on someone who
does not know your software yet

Screenshots

= Switch team

£ My templates -

2 My profile

2% e

Bring examples that show the main functionality of your software. The more examples, the better. If
the examples go beyond the scope of the documentation, they can be moved to a separate
directory. Just make sure it is easy to find.

TIB i 1t | Leibniz
‘ 10, 2] Universiti
1094 | Hannover

Publishing software

Publish software in a publication repository (like Zenodo or your institutional data
repository)

= This gives you:
= An unique and persistent identifier (e.g. DOI)
= An identifier that points to the specific version of your software
= Provide citation metadata for your software (via CFF)

» License your code

Possibility of additional publication in a software journal

Repository publication = software journal = papers

Important: The source code repository (e.g. GitHub, GitLab) is not a publication
repository!

7 O

What should be considered when publishing?
First, that you get a unique and persistent identifier, for example a DOI.

Therefore, you should publish your research software in a publication repository, such as a subject-
specific or institutional repository.

And secondly, you should provide citation metadata so that your software can be cited correctly.
With a CFF file, which we already mentioned in one of the previous slides, this is quite easy to do.

Another important step: Choose a license under whose terms your software should be and draw
attention to it, e.g. in a README file.

Source code repositories, such as GitHUb, are not suitable for publishing, by the way, because you
won't get a DOI there, which is important if you want to cite and reference your data.

In addition to publishing in a research data repository, you can also publish your software in a peer-
reviewed software journal to increase visibility.

You should always publish the software in a repository, then you can of course also publish itin a
software journal or other paper.

TIB i 1t | Leibniz
‘ + € 2] Universitit
1094 | Hannover

Licenses
s : D) ™
Common software licenses: rLlcenses for text and data:
MIT
MPL 2.0 Creative Commons licenses
GPL 3.0 — only CCO0 — no name attribution, no restrictions
CC-BY — author attribution when using the
{ Choose an open source license I data
CC-BY-SA — author attribution and share
\ - under the same conditions
Example: Overview of the MIT-License I Choose a CC license]
N /
MIT License
A short and simple permissive license with conditions only requiring preservation of copyright and license
notices. Licensed works, modifications, and larger works may be distributed under different terms and
without source code.
Permissions Conditions Limitations
® Commercial use ® License and copyright notice @ Liability
@ Distribution @ Warranty
. Modifcation https://choosealicense.com/
AL licenses/mit/
28

As noted in the previous slide, when you publish your data, you usually need to license your dataset.
Licenses clarify whether or not the published data can be reused and under what circumstances. It's
important to know that very restricted licenses can hinder the reuse of your data by others. The most
open licenses are CCO and CC-BY. If you intend to combine and reuse different data sources, you
must make sure that this is in accordance with the respective licenses of each data source.

Creative commons licenses: choose

When you make software code openly available, you need to provide a software license. In a similar
way, the license provides the legal framework for the use, modification and sharing of the software
and derived versions thereof. The open source initiative offers a catalogue of approved licenses
which have undergone a review process. If you have no further experience, we recommend filtering
for “Popular/strong community” licenses, since these are widely used and adapted.

Choose an open source software license

https://creativecommons.org/choose/
https://choosealicense.com/

TIB it
. 102] Universitit
1ea’ 4 | Hannover

Summary

Software management happens before you even start coding: #90 nee s

YOURE LOOKING AT THiS FILE BECAUSE
THE PARSE. FUNCTION FINALLY BROKE..

Clarify responsibilities £ T N ForBLE. You HAE D RAREE
SINCERELY, PreT SELF

Agree on standards and methods and write them down (SMP) l prstipbim kg

Recognize that data and software management are work tasks that will ETAT TRP T0 KELAND?

) STOP TOGIG ME!
consume some of your time /

Develop a culture that values data- and software management

Include the best practices in your everyday work

Think of your future self and anyone who might want to re-use your code ~ Mtps://xked.com/1421/

Engage in projects of others: Create and solve issues, reuse instead of

setting up new

29 | O

We hope that you have found some inspiration how to make your software projects FAIR. There are
many things you can do as an individual, but it is not only your responsibility to write and publish
software in a clean and FAIR way. Group leaders need to emphasize these management practices
to give guidance to the researchers. If you have the chance to foster awareness around the need for
good software management practices, you can be a role model for others.

PR

Supporting services and initiatives

External information and support

RSE working groups and initiatives

0 Ol

This course offers a overview over different aspects of software management. There are numerous
sources of information and support that you can consult to go into more detail on some aspects that
are interesting for you. In this final chapter, we would like to present some of them.

TIB S ii 1 || Leibniz
‘ 1 ©j Z) Universitit
too’' 4 | Hannover

External information and support

Courses, talks and schools: Self-training courses:
~

@ B (.
Suresoft Project: Workshop \?\;Jgfkss%ﬁos:g\glg?tqe Hub:
schedule with courses on :
: : foundations, Clean Code,
SSuresoft [N 8 Suresoft RSN
software engineering more
\) . </
; e N — e N
Hessian Research Data software Software Carpentry: You
HeFDI Infrastructures: Data and carpentry can work through the
.t Code Schools, Data Talks Iegsons on the.Unlx.SheII,
" L ') Git, Programming with
\Python or R by yourself
~
m Helmholtz Information & Data Science
Academy:
Courses, schools, workshops & talks
4
S cmon

There is much more help and support beyond the university. Some organizations offer various
courses and resources on research software management. Check the dates of the workshop
schedule of the Suresoft Project, HeFDI and HiDA to take part in online workshops ore training
schools.

Suresoft Workshop Schedule
HeFDI Data Events
HiDA Course Catalog

You can also self-train with the workshops in the Suresoft Knowledge Hub or the lessons of the
Software Carpentry.

Suresoft Knowledge Hub

Software Carpentry Lessons

https://suresoft.dev/workshops/
https://www.uni-marburg.de/en/hefdi/data-events
https://www.helmholtz-hida.de/course-catalog/en/
https://suresoft.dev/knowledge-hub/
https://software-carpentry.org/lessons/

) T|B - AT i1] Leibniz
‘ 102] Universitit
1oe 4 | Hannover

RSE working groups and initiatives

© =

Research Software Engineers (RSEs) Research Data Alliance (RDA):
+ German association (de-RSE e.V.) International network of RDM specialists
» monthly call, Chat, Blog with a special focus on technical aspects.

+ International conferences for and
by Research Software Engineers

3o) Fd]

SUSTAINABILITY
INSTITUTE

NEDI: The federal government and the state

governments jointly fund the development of a

. Research Software Healthcheck: national research data infrastructure (NFDI). 26
Evaluation tool to check your software consortia are developing disciplinary standards,

+ online Research Software Camps establish services and offer trainings.

Software Sustainability Institute (UK)
» Motto: “Better software, better research”

» Bl

There are cross-disciplinary initiatives and working groups which are working on new standards,
workflows and trainings to help researchers to implement good research software development
practices.

The Research Software Engineers (RSEs) are a community of researchers, scientists and others
developing software in and for research within the German scientific landscape who want to make
research software more sustainable and work towards changing the value RS has in the academic
recognition and rewards system.

The Research Data Alliance focuses on infrastructure and data standards. The RDA is a global
network with continental and national chapters and working groups for individual topics. The FAIR
for Research Software (FAIR4RS) working group has published the FAIR Principles for Research
Software (FAIR4RS Principles), which we have mentioned in this course.

The Software Sustainability Institute is based at the Universities of Edinburgh, Manchester, Oxford
and Southampton, and experts with a breadth of experience in software development and training
works towards the motto “Better software, better research”.

Of particular importance to researchers are the disciplinary consortia that emerged in the scope of
the national research data infrastructure, NEDI. These consortia receive long-term funding from the
federal government and the states and are expected to establish disciplinary standards, to develop
services and to organise the research community.

https://de-rse.org/en/
https://rd-alliance.org/about-rda
https://www.software.ac.uk/
https://www.nfdi.de/

Thank you for taking this course!

DATA FoR WTURE GENERATIoNs

by Auke Herrema

33

We wish you all the best for your future research data management!

